Impact of instrumental settings in electrospray ionization ion trap mass spectrometry on the analysis of multi-CH3-/CD3-isotopologs in cellulose ether analysis: a quantitative evaluation

Author:

Schleicher Sarah,Lottje Inka-Rosalia,Mischnick Petra

Abstract

AbstractExact quantification of the molar ratios of isotopologous mixed O-methyl-O-methyl-d3-cellooligosaccharides (COS) comprising all combinations from fully methylated to fully deuteromethylated constituents within an individual degree of polymerization (DP) is the key step in the analysis of the substituent distribution over the polymer chains in methyl celluloses (MC). Deuteromethylation of MC is performed to level chemical differences, but due to a m/z range of 3 DP·ΔMe/Me-d3, bias during MS measurement cannot certainly be excluded. Therefore, ionization, ion transportation, and ion storage were studied with an electrospray ionization ion trap mass spectrometer (ESI-IT-MS) using binary equimolar mixtures of per-O-Me- and per-O-Me-d3-COS, defining the border cases of a particular Me/Me-d3-profile. Reference data of their molar ratio were determined after reductive amination with m-amino benzoic acid by HPLC-UV. COS of DP2–6 were measured as their sodium adducts at c = 10−6 M by syringe pump infusion. The impact of the RF voltage of the ion trap (TD), the octopole RF and DC voltages, and the Cap Exit potential on absolute and relative ion intensities were studied. Adapting the Cap Exit voltage was essential for correct quantification of DP2, while all COS of higher DP behaved insensitive with respect to bias. To check whether any bias occurs in the electrospray ionization process of the isotopologs, concentration-dependent measurements were performed with optimized instrumental settings for each DP. Intensity ratios IR = I (Me-d3)/I (Me) did not show any concentration-dependent trend and no selective ion suppression. Its decrease with DP observed under usually applied standard conditions (smart mode) is a consequence of discrimination according to m/z and can be overcome by appropriate instrumental settings of Oct 2 DC and TD. IR between 0.971 ± 0.008 and 1.040 ± 0.009 with no trend for DP (2-6) were obtained by averaging all measurements in the range 2 · 10−7 to 2 · 10−5 M total concentration. The DP-related optimized settings were applied to two MCs and compared with the results obtained under so far applied standard conditions. Graphical abstract

Funder

Technische Universität Braunschweig

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3