Expanding the boundaries of atomic spectroscopy at the single-cell level: critical review of SP-ICP-MS, LIBS and LA-ICP-MS advances for the elemental analysis of tissues and single cells

Author:

Davison ClaireORCID,Beste DanyORCID,Bailey MelanieORCID,Felipe-Sotelo MónicaORCID

Abstract

AbstractMetals have a fundamental role in microbiology, and accurate methods are needed for their identification and quantification. The inability to assess cellular heterogeneity is considered an impediment to the successful treatment of different diseases. Unlike bulk approaches, single-cell analysis allows elemental heterogeneity across genetically identical populations to be related to specific biological events and to the effectiveness of drugs. Single particle-inductively coupled plasma-mass spectrometry (SP-ICP-MS) can analyse single cells in suspension and measure this heterogeneity. Here we explore advances in instrumental design, compare mass analysers and discuss key parameters requiring optimisation. This review has identified that the effect of pre-treatment of cell suspensions and cell fixation approaches require further study and novel validation methods are needed as using bulk measurements is unsatisfactory. SP-ICP-MS has the advantage that a large number of cells can be analysed; however, it does not provide spatial information. Techniques based on laser ablation (LA) enable elemental mapping at the single-cell level, such as laser-induced breakdown spectroscopy (LIBS) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The sensitivity of commercial LIBS instruments restricts its use for sub-tissue applications; however, the capacity to analyse endogenous bulk components paired with developments in nano-LIBS technology shows great potential for cellular research. LA-ICP-MS offers high sensitivity for the direct analysis of single cells, but standardisation requires further development. The hyphenation of these trace elemental analysis techniques and their coupling with multi-omic technologies for single-cell analysis have enormous potential in answering fundamental biological questions.

Funder

Doctoral College at the University of Surrey

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3