Evaluation of distribution of emerging mycotoxins in human tissues: applications of dispersive liquid–liquid microextraction and liquid chromatography-mass spectrometry

Author:

Castell Ana,Arroyo-Manzanares Natalia,Palma-Manrique Rosa,Campillo Natalia,Torres Carmen,Fenoll José,Viñas PilarORCID

Abstract

AbstractIn this work, a complete study of the distribution of emerging mycotoxins in the human body has been carried out. Specifically, the presence of enniatins (A, A1, B, B1) and beauvericin has been monitored in brain, lung, kidney, fat, liver, and heart samples. A unique methodology based on solid–liquid extraction (SLE) followed by dispersive liquid–liquid microextraction (DLLME) was proposed for the six different matrices. Mycotoxin isolation was performed by adding ultrapure water, acetonitrile, and sodium chloride to the tissue sample for SLE, while the DLLME step was performed using chloroform as extraction solvent. Subsequently, the analysis was carried out by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC–MS/MS). The proposed method allowed limits of quantification (LOQs) to be obtained in a range of 0.001–0.150 ng g−1, depending on the tissue and mycotoxin. The precision was investigated intraday and interday, not exceeding of 9.8% of relative standard deviation. In addition, trueness studies achieved 75 to 115% at a mycotoxin concentration of 25 ng g−1 and from 82 to 118% at 5 ng g−1. The application of this methodology to 26 forensic autopsies demonstrated the bioaccumulation of emerging mycotoxins in the human body since all mycotoxins were detected in tissues. Enniatin B (ENNB) showed a high occurrence, being detected in 100% of liver (7 ± 13 ng g−1) and fat samples (0.2 ± 0.8 ng g−1). The lung had a high incidence of all emerging mycotoxins at low concentrations, while ENNB, ENNB1, and ENNA1 were not quantifiable in heart samples. Co-occurrence of mycotoxins was also investigated, and statistical tests were applied to evaluate the distribution of these mycotoxins in the human body. Graphical Abstract

Funder

Ministerio de Ciencia e Innovación

Universidad de Murcia

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3