Modification of EDC method for increased labeling efficiency and characterization of low-content protein in gum acacia using asymmetrical flow field-flow fractionation coupled with multiple detectors

Author:

Zhang Meiyu,Nilsson Lars,Lee Seungho,Choi Jaeyeong

Abstract

Abstract1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) is widely used as a crosslinker for fluorescence labeling of protein in the fields of biochemistry and food analysis. Many natural polysaccharides often contain some proteins or peptides that are very low in content but play a vital role in their biological function as well as technical applications. Determination of these low-content proteinaceous matters requires a highly sensitive and selective method. In this study, a methodological approach for investigations of the presence of proteinaceous material over the molar mass distribution (MD) of polysaccharides was developed using gum acacia (GA) as a model polysaccharide. EDC fluorescence-labeling method was modified by changing the pH (7, 9, and 11) of the solution for the analysis of low-content protein in food materials. Fluorescence spectroscopy and asymmetrical flow field-flow fractionation (AF4) were employed for characterizing the labeling efficiency and physiochemical properties of unlabeled and fluorescence-labeled GA. AF4 provided molar mass (M) and the radius of gyration (rG) of arabinogalactan (AG) and arabinogalactan protein complex (AGP) and determined the presence of proteinaceous matter over the MD. The labeling efficiencies of GA at pH 7, 9, and 11 determined by fluorescence spectroscopy were 56.5, 68.4, and 72.0%, respectively, with an increment of 15.5% when pH was increased from 7 to 11. The modified EDC fluorescence-labeling method allows highly sensitive and selective analysis of low-content proteinaceous matters and their distribution in natural polysaccharides. Graphical abstract

Funder

Swedish Foundation for International Cooperation in Research and Higher Education

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3