Author:
Zuliani Alessio,Khiar Noureddine,Carrillo-Carrión Carolina
Abstract
AbstractThe deployment of metal–organic frameworks (MOFs) in a plethora of analytical and bioanalytical applications is a growing research area. Their unique properties such as high but tunable porosity, well-defined channels or pores, and ease of post-synthetic modification to incorporate additional functional units make them ideal candidates for sensing applications. This is possible because the interaction of analytes with a MOF often results in a change in its structure, eventually leading to a modification of the intrinsic physicochemical properties of the MOF which is then transduced into a measurable signal. The high porosity allows for the adsorption of analytes very efficiently, while the tunable pore sizes/nature and/or installation of specific recognition groups allow modulating the affinity towards different classes of compounds, which in turn lead to good sensor sensitivity and selectivity, respectively. Some figures are given to illustrate the potential of MOF-based sensors in the most relevant application fields, and future challenges and opportunities to their possible translation from academia (i.e., laboratory testing of MOF sensing properties) to industry (i.e., real-world analytical sensor devices) are critically discussed.
Graphical abstract
Funder
Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía
Agencia Estatal de Investigación
Consejo Superior de Investigaciones Cientificas
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry,Analytical Chemistry
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献