Development, validation and application of an LC–MS/MS method quantifying free forms of the micronutrients queuine and queuosine in human plasma using a surrogate matrix approach

Author:

Pan XiaobeiORCID,Chandrasekaran Swathine,Woodside Jayne V.,Riedel-Heller Steffi G.,Scherer Martin,Wagner Michael,Ramirez Alfredo,Green Brian D.

Abstract

AbstractQueuosine (Q) is a hypermodified 7-deaza-guanosine nucleoside exclusively synthesized by bacteria. This micronutrient and its respective nucleobase form queuine (q) are salvaged by humans either from gut microflora or digested food. Depletion of Q-tRNA in human or mouse cells causes protein misfolding that triggers endoplasmic reticular stress and the activation of the unfolded protein responses. In vivo, this reduces the neuronal architecture of the mouse brain affecting learning and memory. Herein, a sensitive method for quantifying free q and Q in human blood was developed, optimised and validated. After evaluating q/Q extraction efficiency in several different solid-phase sorbents, Bond Elut PBA (phenylboronic acid) cartridges were found to have the highest extraction recovery for q (82%) and Q (71%) from pooled human plasma. PBS with 4% BSA was used as surrogate matrix for method development and validation. An LC–MS/MS method was validated across the concentration range of 0.0003–1 µM for both q and Q, showing excellent linearity (r2 = 0.997 (q) and r2 = 0.998 (Q)), limit of quantification (0.0003 µM), accuracy (100.39–125.71%) and precision (CV% < 15.68%). In a sampling of healthy volunteers (n = 44), there was no significant difference in q levels between male (n = 14; mean = 0.0068 µM) and female (n = 30; mean = 0.0080 µM) participants (p = 0.50). Q was not detected in human plasma. This validated method can now be used to further substantiate the role of q/Q in nutrition, physiology and pathology. Graphical Abstract

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3