Preparation of 18O-labelled azaspiracids for accurate quantitation using liquid chromatography–mass spectrometry

Author:

Wright Elliott J.ORCID,Meija JurisORCID,McCarron PearseORCID,Miles Christopher O.ORCID

Abstract

AbstractAzaspiracids (AZAs) are a group of polyether marine algal toxins known to accumulate in shellfish, posing a risk to human health and the seafood industry. Analysis of AZAs is typically performed using LC–MS, which can suffer from matrix effects that significantly impact the accuracy of measurement results. While the use of isotopic internal standards is an effective approach to correct for these effects, isotopically labelled standards for AZAs are not currently available. In this study, 18O-labelled AZA1, AZA2, and AZA3 were prepared by reaction with H218O under acidic conditions, and the reaction kinetics and sites of incorporation were studied using LC–HRMS/MS aided by mathematical analysis of their isotope patterns. Analysis of the isotopic incorporation in AZA1 and AZA3 indicated the presence of four exchangeable oxygen atoms. Excessive isomerization occurred during preparation of 18O-labelled AZA2, suggesting a role for the 8-methyl group in the thermodynamic stability of AZAs. Neutralized mixtures of 18O-labelled AZA1 and AZA3 were found to maintain their isotopic and isomeric integrities when stored at −20 °C and were used to develop an isotope-dilution LC–MS method which was applied to reference materials of shellfish matrices containing AZAs, demonstrating high accuracy and excellent reproducibility. Preparation of isotopically labelled compounds using the isotopic exchange method, combined with the kinetic analysis, offers a feasible way to obtain isotopically labelled internal standards for a wide variety of biomolecules to support reliable quantitation. Graphical Abstract

Funder

National Research Council Canada

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3