Fast optical method for characterizing plasmonic nanoparticle adhesion on functionalized surfaces

Author:

Mérai László,Janovák László,Kovács Dániel Sándor,Szenti Imre,Vásárhelyi Lívia,Kukovecz Ákos,Dékány Imre,Kónya Zoltán,Sebők Dániel

Abstract

AbstractIn this paper, a rapid optical method for characterizing plasmonic (gold) nanoparticle (AuNP) adhesion is presented. Two different methods were used for AuNP preparation: the well-known Turkevich method resulted in particles with negative surface charge; for preparing AuNPs with positive surface charge, stainless steel was used as reducing agent. The solid surface for adhesion was provided by a column packed with pristine or surface-modified glass beads. The size of the nanoparticles was studied by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS); the surface charge of the components was determined by streaming potential measurements. The characterization of adhesion was performed in a flow system by UV-Vis spectroscopy. During the adhesion experiments, the role of the surface charge, the particle size, and the pH were studied, as well as the adhered amount of gold nanoparticles and the surface coverage values. The latter was estimated by theoretical calculations and defined by the quotient of the measured and the maximal adhered amount of nanoparticles, which could be determined by the cross-sectional area of the NPs and the specific surface area of the glass beads. The results are verified by the polarization reflectometric interference spectroscopy (PRIfS) method: silica nanoparticles with diameters of a few hundred (d~450) nanometers were immobilized on the surface of glass substrate by the Langmuir–Blodgett method, the surface was modified similar to the 3D (continuous flow packed column) system, and gold nanoparticles from different pH solutions were adhered during the measurements. These kinds of modified surfaces allow the investigation of biomolecule adsorption in the same reflectometric setup.

Funder

National Research, Development and Innovation Office

European Union and the Government of Hungary

Emberi Eroforrások Minisztériuma

Magyar Tudományos Akadémia

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3