Batch correction methods for nontarget chemical analysis data: application to a municipal wastewater collection system

Author:

Hattaway Madison E.,Black Gabrielle P.,Young Thomas M.

Abstract

AbstractNontarget chemical analysis using high-resolution mass spectrometry has increasingly been used to discern spatial patterns and temporal trends in anthropogenic chemical abundance in natural and engineered systems. A critical experimental design consideration in such applications, especially those monitoring complex matrices over long time periods, is a choice between analyzing samples in multiple batches as they are collected, or in one batch after all samples have been processed. While datasets acquired in multiple analytical batches can include the effects of instrumental variability over time, datasets acquired in a single batch risk compound degradation during sample storage. To assess the influence of batch effects on the analysis and interpretation of nontarget data, this study examined a set of 56 samples collected from a municipal wastewater system over 7 months. Each month’s samples included 6 from sites within the collection system, one combined influent, and one treated effluent sample. Samples were analyzed using liquid chromatography high-resolution mass spectrometry in positive electrospray ionization mode in multiple batches as the samples were collected and in a single batch at the conclusion of the study. Data were aligned and normalized using internal standard scaling and ComBat, an empirical Bayes method developed for estimating and removing batch effects in microarrays. As judged by multiple lines of evidence, including comparing principal variance component analysis between single and multi-batch datasets and through patterns in principal components and hierarchical clustering analyses, ComBat appeared to significantly reduce the influence of batch effects. For this reason, we recommend the use of more, small batches with an appropriate batch correction step rather than acquisition in one large batch. Graphical abstract

Funder

California Department of Pesticide Regulation

National Institute of Environmental Health Sciences

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3