Magnetosomes for bioassays by merging fluorescent liposomes and magnetic nanoparticles: encapsulation and bilayer insertion strategies

Author:

Hermann Cornelia A.,Hofmann Carola,Duerkop Axel,Baeumner Antje J.ORCID

Abstract

AbstractMagnetized liposome (magnetosomes) labels can overcome diffusion limitations in bioassays through fast and easy magnetic attraction. Our aim therefore was to advance the understanding of factors influencing their synthesis focusing on encapsulation strategies and synthesis parameters. Magnetosome synthesis is governed by the surface chemistry and the size of the magnetic nanoparticles used. We therefore studied the two possible magnetic labelling strategies, which are the incorporation of small, hydrophobic magnetic nanoparticles (MNPs) into the bilayer core (b-liposomes) and the entrapment of larger hydrophilic MNPs into the liposomes’ inner cavity (i-liposomes). Furthermore, they were optimized and compared for application in a DNA bioassay. The major obstacles observed for each of these strategies were on the one hand the need for highly concentrated hydrophilic MNPs, which is limited by their colloidal stability and costs, and on the other hand the balancing of magnetic strength vs. size for the hydrophobic MNPs. In the end, both strategies yielded magnetosomes with good performance, which improved the limit of detection of a non-magnetic DNA hybridization assay by a factor of 3–8-fold. Here, i-liposomes with a magnetization yield of 5% could be further improved through a simple magnetic pre-concentration step and provided in the end an 8-fold improvement of the limit of detection compared with non-magnetic conditions. In the case of b-liposomes, Janus-like particles were generated during the synthesis and yielded a fraction of 15% magnetosomes directly. Surprisingly, further magnetic pre-concentration did not improve their bioassay performance. It is thus assumed that magnetosomes pull normal liposomes through the magnetic field towards the surface and the presence of more magnetosomes is not needed. The overall stability of magnetosomes during storage and magnetic action, their superior bioassay performance, and their adaptability towards size and surface chemistry of MNPs makes them highly valuable signal enhancers in bioanalysis and potential tools for bioseparations.

Funder

Universität Regensburg

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3