Novel method for rapid monitoring of OPFRs by LLE and GC–MS as a tool for assessing biodegradation: validation and applicability

Author:

Losantos DianaORCID,Palacios Oscar,Berge María Jesús,Sarrà MontserratORCID,Caminal GloriaORCID,Eustaquio Alba

Abstract

AbstractOrganophosphate flame retardants (OPFRs) are high-production volume chemicals widely present in environmental compartments. The presence of water-soluble OPFRs (tri-n-butyl phosphate (TnBP), tris(2-butoxyethyl) phosphate (TBEP), tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCPP), and triethyl phosphate (TEP)) in water compartments evidences the struggle of conventional wastewater treatment plants (WWTPs) to effectively eliminate these toxic compounds. This study reports for the first time the use of white-rot fungi as a promising alternative for the removal of these OPFRs. To accomplish this, a simple and cost-efficient quantification method for rapid monitoring of these contaminants’ concentrations by GC–MS while accounting for matrix effects was developed. The method proved to be valid and reliable for all the tested parameters. Sample stability was examined under various storage conditions, showing the original samples to be stable after 60 days of freezing, while post-extraction storage techniques were also effective. Finally, a screening of fungal degraders while assessing the influence of the glucose regime on OPFR removal was performed. Longer chain organophosphate flame retardants, TBP and TBEP, could be easily and completely removed by the fungus Ganoderma lucidum after only 4 days. This fungus also stood out as the sole organism capable of partially degrading TCEP (35% removal). The other chlorinated compound, TCPP, was more easily degraded and 70% of its main isomer was removed by T. versicolor. However, chlorinated compounds were only partially degraded under nutrient-limiting conditions. TEP was either not degraded or poorly degraded, and it is likely that it is a transformation product from another OPFR’s degradation. These results suggest that degradation of chlorinated compounds is dependent on the concentration of the main carbon source and that more polar OPFRs are less susceptible to degradation, given that they are less accessible to radical removal by fungi. Overall, the findings of the present study pave the way for further planned research and a potential application for the degradation of these contaminants in real wastewaters. Graphical Abstract

Funder

Ministerio de Ciencia e Innovación

Universitat Autònoma de Barcelona

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3