Estimation of measurement uncertainty for the quantification of protein by ID-LC–MS/MS

Author:

Beasley-Green AshleyORCID,Heckert N. AlanORCID

Abstract

AbstractThe emergence of mass spectrometry (MS)-based methods to quantify proteins for clinical applications has led to the need for accurate and consistent measurements. To meet the clinical needs of MS-based protein results, it is important that the results are traceable to higher-order standards and methods and have defined uncertainty values. Therefore, we outline a comprehensive approach for the estimation of measurement uncertainty of a MS-based procedure for the quantification of a protein biomarker. Using a bottom-up approach, which is the model outlined in the “Guide to the Expression of Uncertainty of Measurement” (GUM), we evaluated the uncertainty components of a MS-based measurement procedure for a protein biomarker in a complex matrix. The cause-and-effect diagram of the procedure is used to identify each uncertainty component, and statistical equations are derived to determine the overall combined uncertainty. Evaluation of the uncertainty components not only enables the calculation of the measurement uncertainty but can also be used to determine if the procedure needs improvement. To demonstrate the use of the bottom-up approach, the overall combined uncertainty is estimated for the National Institute of Standards and Technology (NIST) candidate reference measurement procedure for albumin in human urine. The results of the uncertainty approach are applied to the determination of uncertainty for the certified value for albumin in candidate NIST Standard Reference Material® (SRM) 3666. This study provides a framework for measurement uncertainty estimation of a MS-based protein procedure by identifying the uncertainty components of the procedure to derive the overall combined uncertainty. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Reference26 articles.

1. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. International vocabulary of metrology - basic and general concepts and associated terms (VIM). Joint Committee for Guides in Metrology, JCGM 200:2012. (3rd edition). URL: https://www.bipm.org/documents/20126/2071204/JCGM_\200_2012.pdf/f0e1ad45-d337-bbeb-53a6-15fe649d0ff1. Accessed 04 Feb 2023.

2. BIPM, IEC, IFCC, ILAC, ISO, IUPAC, IUPAP, and OIML. Evaluation of measurement data - guide to the expression of uncertainty in measurement. Joint Committee for Guides in Metrology, JCGM 100:2008. URL: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6. Accessed 04 Feb 2023.

3. Magnusson B, Ossowicki H, Rienitz O, Theodorsson E. Routine internal- and external-quality control data in clinical laboratories for estimating measurement and diagnostic uncertainty using GUM principles. Scand J Clin Lab Invest. 2012; https://doi.org/10.3109/00365513.2011.649015.

4. Lee JH, Choi JH, Youn JS, Cha YJ, Song W, Park AJ. Comparison between bottom-up and top-down approaches in the estimation of measurement uncertainty. Clin Chem Lab Med. 2015. https://doi.org/10.1515/cclm-2014-0801.

5. Beasley-Green A, Burris N, Bunk DM, Phinney KW. Multiplexed LC-MS/MS assay for urine albumin. J Proteome Res. 2014. https://doi.org/10.1021/pr500204c.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3