Investigating the quality of extraction and quantification of bioactive compounds in berries through liquid chromatography and multivariate curve resolution

Author:

Gondo Thamani Freedom,Huang Fang,Marungruang Nittaya,Heyman-Lindén Lovisa,Turner Charlotta

Abstract

AbstractBerries are a rich source of natural antioxidant compounds, which are essential to profile, as they add to their nutritional value. However, the complexity of the matrix and the structural diversity of these compounds pose challenges in extraction and chromatographic separation. By relying on multivariate curve resolution alternating least squares (MCR-ALS) ability to extract components from complex spectral mixtures, our study evaluates the contributions of various extraction techniques to interference, extractability, and quantifying different groups of overlapping compounds using liquid chromatography diode array detection (LC-DAD) data. Additionally, the combination of these methods extends its applicability to evaluate polyphenol degradation in stored berry smoothies, where evolving factor analysis (EFA) is also used to elucidate degradation products. Results indicate that among the extraction techniques, ultrasonication-assisted extraction employing 1% formic acid in methanol demonstrated superior extractability and selectivity for the different phenolic compound groups, compared with both pressurized liquid extraction and centrifugation of the fresh berry smoothie. Employing MCR-ALS on the LC-DAD data enabled reliable estimation of total amounts of compound classes with high spectral overlaps. Degradation studies revealed significant temperature-dependent effects on anthocyanins, with at least 50% degradation after 7 months of storage at room temperature, while refrigeration and freezing maintained fair stability for at least 12 months. The EFA model estimated phenolic derivatives as the main possible degradation products. These findings enhance the reliability of quantifying polyphenolic compounds and understanding their stability during the storage of berry products. Graphical abstract

Funder

Berry Lab AB

Svenska Forskningsrådet Formas

Lund University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3