High-performance thin-layer chromatography in combination with an acetylcholinesterase-inhibition bioassay with pre-oxidation of organothiophosphates to determine neurotoxic effects in storm, waste, and surface water

Author:

Baetz Nicolai,Schmidt Torsten C.,Tuerk Jochen

Abstract

AbstractPesticides such as organothiophosphates (OTPs) are neurotoxically active and enter the aquatic environment. Bioassays, using acetylcholinesterase (AChE), a suitable substrate and reactant, can be applied for the photometric detection of AChE-inhibiton (AChE-I) effects. The oxidized forms of OTPs, so-called oxons, have higher inhibition potentials for AChE. Therefore, a higher sensitivity is achieved for application of oxidized samples to the AChE assay. In this study, the oxidation of malathion, parathion, and chlorpyrifos by n-bromosuccinimide (NBS) was investigated in an approach combining high-performance thin-layer chromatography (HPTLC) with an AChE-I assay. Two AChE application approaches, immersion and spraying, were compared regarding sensitivity, precision, and general feasibility of the OTP effect detection. The oxidation by NBS led to an activation of the OTPs and a strong increase in sensitivity similar to the oxons tested. The sensitivity and precision of the two application techniques were similar, although the spray method was slightly more sensitive to the oxidized OTPs. The 10% inhibition concentrations (IC10) for the spray approach were 0.26, 0.75, and 0.35 ng/spot for activated malathion, parathion, and chlorpyrifos, respectively. AChE-I effect recoveries in samples from a stormwater retention basin and receiving stream were between 69 and 92% for malathion, parathion, and chlorpyrifos. The overall workflow, including sample enrichment by solid-phase extraction, HPTLC, oxidation of OTPs, and AChE-I assay, was demonstrated to be suitable for the detection of AChE-I effects in native water samples. An effect of unknown origin was found in a sample from a stormwater retention basin.

Funder

Universität Duisburg-Essen

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3