Insight into the effects of moisture and layer build-up on the formation of lead soaps using micro-ATR-FTIR spectroscopic imaging of complex painted stratigraphies

Author:

Possenti Elena,Colombo Chiara,Realini Marco,Song Cai Li,Kazarian Sergei G.ORCID

Abstract

AbstractMetal soaps are formed in paint layers thorough the reaction of metal ions of pigments and fatty acids of organic binders. In this study, micro-ATR-FTIR spectroscopic imaging was used to analyse the formation of lead soaps in oil-based paint layers in relation to their exposure to moisture sources. The investigations were carried out on authentic samples of complex stratigraphies from cold painted terracotta statues (Sacred Mount, Varallo, UNESCO) and different IR-active lead white pigments, organic materials, and lead soaps were discriminated. The saponification of selected paint layers was correlated to the conservation history, the manufacturing technique, and the build-up of layers. The presence of hydrophilic layers within the stratigraphy and their role as a further water source are discussed. Furthermore, the modifications experienced by lead-based pigments from the core of an intact grain of pigment towards the newly formed decay phases were investigated via a novel approach based on shift of the peak for the corresponding spectral bands and their integrated absorbance in the ATR-FTIR spectra. Qualitative information on the spatial distribution from the chemical images was combined with quantitative information on the peak shift to evaluate the different manufacture (lead carbonate, basic lead carbonate) or the extent of decay undergone by the lead-based pigments as a function of their grain size, contiguous layers, and moisture source. Similar results, having a high impact on heritage science and analytical chemistry, allow developing up-to-date conservation strategies by connecting an advanced knowledge of the materials to the social and conservation history of artefacts.

Funder

Short Term Mobility (STM) program promoted by the Italian National Research Council

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3