Establishing spectrochemical changes in the natural history of oesophageal adenocarcinoma from tissue Raman mapping analysis

Author:

Maitra Ishaan,Morais Camilo L. M.,Lima Kássio M. G.,Ashton Katherine M.,Bury Danielle,Date Ravindra S.,Martin Francis L.

Abstract

AbstractRaman spectroscopy is a fast and sensitive technique able to identify molecular changes in biological specimens. Herein, we report on three cases where Raman microspectroscopy was used to distinguish normal vs. oesophageal adenocarcinoma (OAC) (case 1) and Barrett’s oesophagus vs. OAC (cases 2 and 3) in a non-destructive and highly accurate fashion. Normal and OAC tissues were discriminated using principal component analysis plus linear discriminant analysis (PCA-LDA) with 97% accuracy (94% sensitivity and 100% specificity) (case 1); Barrett’s oesophagus vs. OAC tissues were discriminated with accuracies ranging from 98 to 100% (97–100% sensitivity and 100% specificity). Spectral markers responsible for class differentiation were obtained through the difference-between-mean spectrum for each group and the PCA loadings, where C–O–C skeletal mode in β-glucose (900 cm−1), lipids (967 cm−1), phosphodioxy (1296 cm−1), deoxyribose (1456 cm−1) and collagen (1445, 1665 cm−1) were associated with normal and OAC tissue differences. Phenylalanine (1003 cm−1), proline/collagen (1066, 1445 cm−1), phospholipids (1130 cm−1), CH2 angular deformation (1295 cm−1), disaccharides (1462 cm−1) and proteins (amide I, 1672/5 cm−1) were associated with Barrett’s oesophagus and OAC tissue differences. These findings show the potential of using Raman microspectroscopy imaging for fast and accurate diagnoses of oesophageal pathologies and establishing subtle molecular changes predisposing to adenocarcinoma in a clinical setting.

Funder

University of Central Lancashire

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Reference32 articles.

1. Yousef F, Cardwell C, Cantwell M, Galway KJ, Johnston B, Murray L. The incidence of esophageal cancer and high-grade dysplasia in Barrett’s esophagus: a systematic review and meta-analysis. Am J Epidemiol. 2008;168:237–49.

2. Layke JC, Lopez PP. Esophageal cancer: a review and update. Am Fam Physician. 2006;73:2187–94.

3. Wong A, Fitzgerald RC. Epidemiologic risk factors for Barrett’s esophagus and associated adenocarcinoma. Clin Gastroenterol Hepatol. 2005;3:1–10.

4. Farnham GG, Jankowski JA. The field effect in Barrett’s esophagus: can we use it for screening and surveillance? Endoscopy. 2013;45:989–91.

5. Lyng F, Gaz, E, Gardner, P. Preparation of tissues and cells for infrared and Raman spectroscopy and imaging. In: D. Moss (ed) Biomedical applications of synchrotron infrared microspectroscopy, RSC Analytical Spectroscopy Monographs, No; 2011 11:147–85.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3