Molecular ion formation on activated field emitters in atmospheric pressure field desorption mass spectrometry

Author:

Hoyer Matthias,Gross Jürgen H.ORCID

Abstract

AbstractAtmospheric pressure field desorption (APFD) mass spectrometry (MS) has recently been explored as a new contribution to the field of ambient desorption/ionization (ADI). Depending on the selected polarity applied to the field emitter, ionic and polar analytes were demonstrated to deliver positive as well as negative ions. Whereas this recent study solely reported on the formation of even-electron ions of either polarity, the present work on APFD-MS demonstrates the abundant formation of positive molecular ions, M+•, from polycyclic aromatic compounds. Molecular ions were formed on and desorbed from standard 13-µm activated tungsten wire emitters at atmospheric pressure. The commercial field emitters were positioned at about 2 mm distance in front of the atmospheric pressure interface of a Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometer and the entrance electrode of the interface was set to –4.5 to –5.5 kV with respect to the emitter. Emitter-disrupting electric discharges did normally not occur under these conditions. The electric field strengths achieved at the dendritic microneedles were sufficient to allow for the abundant formation of M+• ions of various polycyclic aromatic compounds such as benzo[a]pyrene, anthracene, fluoranthene, 1,1,4,4-tetraphenyl-butadiene, and 1-aza-[6]helicene. In case of the extremely basic 1-aza-[6]helicene protonation strongly competed with molecular ion formation and tended to suppress the field ionization process. All molecular ion compositions were assured by accurate mass-based formula assignments. Graphical Abstract

Funder

Ruprecht-Karls-Universität Heidelberg

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3