Probing antibody surface density and analyte antigen incubation time as dominant parameters influencing the antibody-antigen recognition events of a non-faradaic and diffusion-restricted electrochemical immunosensor

Author:

Zorea Jonathan,Shukla Rajendra P.,Elkabets Moshe,Ben-Yoav HadarORCID

Abstract

AbstractElectrochemical sensors based on antibody-antigen recognition events are commonly used for the rapid, label-free, and sensitive detection of various analytes. However, various parameters at the bioelectronic interface, i.e., before and after the probe (such as an antibody) assembly onto the electrode, have a dominant influence on the underlying detection performance of analytes (such as an antigen). In this work, we thoroughly investigate the dependence of the bioelectronic interface characteristics on parameters that have not been investigated in depth: the antibody density on the electrode’s surface and the antigen incubation time. For this important aim, we utilized the sensitive non-faradaic electrochemical impedance spectroscopy method. We showed that as the incubation time of the antigen-containing drop solution increased, a decrease was observed in both the solution resistance and the diffusional resistance with reflecting boundary elements, as well as the capacitive magnitude of a constant phase element, which decreased at a rate of 160 ± 30 kΩ/min, 800 ± 100 mΩ/min, and 520 ± 80 pF × s(α-1)/min, respectively. Using atomic force microscopy, we also showed that high antibody density led to thicker electrode coating than low antibody density, with root-mean-square roughness values of 2.2 ± 0.2 nm versus 1.28 ± 0.04 nm, respectively. Furthermore, we showed that as the antigen accumulated onto the electrode, the solution resistance increased for high antibody density and decreased for low antibody density. Finally, the antigen detection performance test yielded a better limit of detection for low antibody density than for high antibody density (0.26 μM vs 2.2 μM). Overall, we show here the importance of these two factors and how changing one parameter can drastically affect the desired outcome.

Funder

Concern Foundation

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3