Biomarkers of exposure in urine of active smokers, non-smokers, and vapers

Author:

Gallart-Mateu D.,Dualde P.,Coscollà C.,Soriano J. M.,Garrigues S.,de la Guardia M.

Abstract

AbstractThe exposure to smoking related products has been evaluated through urine illness risk marker determination through the analysis of urine samples of smokers and vapers. Biomarkers and their metabolites such as N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl)-L-cysteine (MHBMA), N-acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA), 2R-N-acetyl-S-(4-hydroxybutan-2-yl)-L-cysteine (HMPMA), and N-acetyl-S-(3-carboxy-2-propyl)-L-cysteine (CMEMA) together with nicotine and cotinine were identified and quantified by LC-HRMS and LC-MS/MS, and data found normalized to the creatinine level. One hundred two urine samples were collected from smokers, non-smokers, and vapers, spanning an age range from 16 to 79 years. Results obtained showed that CEMA was only detected in urine samples from smokers and MHBMA was in the same order of magnitude in all the urine samples analyzed. HMPMA was found in the urine of vapers at the same order of concentration as in non-smokers. 3HPMA in vapers was lower than in the urine of smokers, presenting an intermediate situation between smokers and non-smokers. On the other hand, DHBMA in vapers can reach similar values to those found for smokers, while CMEMA shows concentrations in the urine of vapers higher than in the case of non-smokers and traditional smokers, requiring new research to link this metabolite to the use of electronic cigarettes and possible alternative metabolomic routes. In general, this study seems to verify that traditional smoking practice constitutes a major source of carcinogenic chemicals compared with substitutive practices, although those practices are not free of potential harm. Graphical abstract

Funder

Universitat de Valencia

Publisher

Springer Science and Business Media LLC

Subject

Biochemistry,Analytical Chemistry

Reference51 articles.

1. World Health Organization, July 2021. https://www.who.int/news-room/fact-sheets/detail/tobacco. (last accessed on June 2023).

2. i-Sanidad, November 2020. https://isanidad.com/173553/el-consumo-de-tabaco-ocasiona-cada-ano-en-espana-al-menos-69-000-muertes-prematuras. (last accessed on June 2023).

3. GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. Lancet. 2017;389:1885–906. https://doi.org/10.1016/S0140-6736(17)30819-X.

4. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49. https://doi.org/10.3322/caac.21660.

5. US Department of Health and Human Services. The health consequences of smoking — 50 years of progress. A Report of the Surgeon General (US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2014. (last accessed on June 2023).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3