Monitoring wheat area using sentinel-2 imagery and In-situ spectroradiometer data in heterogeneous field conditions

Author:

Islam AFM Tariqul,Islam A. K. M. Saiful,Islam G. M. Tarekul,Bala Sujit Kumar,Salehin Mashfiqus,Choudhury Apurba Kanti,Mahboob M. Golam,Dey Nepal C.,Hossain Akbar

Abstract

AbstractCrop statistics are crucial for developing a demand-based export and import strategy to ensure a country’s sustainable food security. Remote sensing efficiently generates essential crop statistics, while ground-based supplementary sensor data offers sufficient information for crop delineation. This study explored the multispectral satellite imagery using in-situ ground-based hyperspectral reflectance phenology information as training data to delineate wheat from other competitive winter crops in Northwestern Bangladesh as a case study. Wheat spectral signatures were primarily obtained through a hand-held Spectroradiometer at various phenological stages, aligned with Sentinel-2 data availability. Five vegetation indices (VIs), namely Normalized Difference Vegetation Index (NDVI), Red-edge NDVI (RENDVI), Enhanced Vegetation Index (EVI), Greenness Chromatic Coordinate (GCC) and Soil-Adjusted Vegetation Index (SAVI), were derived from Spectroradiometer-data across six wheat growth stages: seedling, tillering, booting, flowering, grain development, and maturity. Maximum and minimum threshold values for the VIs at those six growth stages were determined from regression analysis of the values collected from Spectroradiometer and Sentinel-2. A rule-based classification technique was then used to categorize Sentinel-2 for wheat crop delineation based on those threshold values. The results revealed that maps based on NDVI, EVI, and SAVI showed overall accuracies of 83.33%, 85.18%, and 81.48%, respectively. These accuracies were found to be statistically acceptable (p < 0.05) outcomes. A positive agreement was observed when comparing the remotely sensed area at the union (4th tier administrative level) with the officially reported data of Bangladesh. This innovative method has the potential to be extended for developing phenology and area delineation for other major crops locally and globally.

Funder

ICT Division Of the Government of Bangladesh

Krishi Gobeshona Foundation, Bangladesh

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3