Soil organic matter components and characteristics of forest soil in spruce and sycamore plantations in the temperate region

Author:

Apori Samuel Obeng,Giltrap Michelle,Dunne Julie,Tian Furong

Abstract

AbstractThe stability of soil organic matter (SOM) that governs soil organic carbon (SOC) storage depends on its characteristics and components, but little is known about how tree species in forest ecosystems affect SOM components and characteristics. In this study, we used FTIR spectroscopy to investigate plantations of two ecologically and economically significant tree species—namely, spruce (Picea spp.) and sycamore (Acer pseudoplatanus)—in order to determine how the different litter inputs and root-microbe interactions of these two plantations affect the functional groups, components, and characteristics of their SOM. Soil samples were taken from the topsoil (0–10 cm) and subsoil (10–20 cm). In the 0–10 cm soil depth, the SOM's hydrophilic, hydrophobic, and aromatic components differ between the spruce and sycamore plantations. The hydrophobic components constitute the primary constituents of the SOM of the two forest plantations, in contrast to the expected predominance of the hydrophilic component of the SOM. Also, the high hydrophobicity (hydrophilic/hydrophobic) in the subsoil of the spruce plantations was attributed to a decrease in hydrophilic components and a subsequent increase in hydrophobic components of the SOM. The sycamore plantations exhibited a higher SOM aromaticity and a greater degree of decomposition than the spruce plantations. The aforementioned distinctions emphasise the contrasting mechanisms involved in transforming and turnover of the two-tree species' soil organic matter (SOM).

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3