Assessment of the AquaCrop model to simulate the impact of soil fertility management on evapotranspiration, yield, and water productivity of maize (Zea May L.) in the sub-humid agro-ecology of Nigeria

Author:

Adeboye Omotayo B.,Schultz Bart,Adeboye Amaka P.,Chukalla Abebe,Shittu Kabiru A.

Abstract

AbstractField experiments were conducted for two seasons in Ile-Ife, Nigeria to evaluate the performance of the AquaCrop model in simulating the effects of soil fertility management on the canopy cover (CC), soil water storages (SWS), cumulative aboveground biomass (BM), evapotranspiration (ETa), grain yields, and water productivity (WP) of rainfed maize. Six levels of soil fertility management and two cultivars of maize, SUWAN 1-SR and PVA led to a 2 by 6 factorial experimental treatment and arranged in a randomized complete block design. Agronomic and environmental parameters were measured for two consecutive seasons. The AquaCrop model was calibrated using data from the wetter year. The AquaCrop model captured well the variances in the CC, R2 ≥ 0.88, RMSE ≤ 14.2, and d-index ≥ 0.97 under full and stressed soil fertility. Although the AquaCrop model over and underestimated SWS, it is still within acceptable limits. The model simulated SWS well, R2 ≥ 0.71, EF ≥ 0.97, and d-index ≥ 0.97. AquaCrop tends to underestimate ETa under rainfall and NPK variabilities. The AquaCrop model simulated grain yields excellently, R2 = 0.99, b = 1.00. The 150% of the recommended NPK application is suitable for the desired improvement in land and water productivity of the crop. The AquaCrop model predicted and captured the trends in the yields and water productivity of maize adequately under varying NPK applications. Further research is required on other cultivars of the crop and locations in the area in order to generalize the adequacy of the model.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3