Author:
Saharkhiz Saber,Mostafavi Mehrnaz,Birashk Amin,Karimian Shiva,Khalilollah Shayan,Jaferian Sohrab,Yazdani Yalda,Alipourfard Iraj,Huh Yun Suk,Farani Marzieh Ramezani,Akhavan-Sigari Reza
Abstract
AbstractIn recent years, there has been a notable increase in the scientific community's interest in rational protein design. The prospect of designing an amino acid sequence that can reliably fold into a desired three-dimensional structure and exhibit the intended function is captivating. However, a major challenge in this endeavor lies in accurately predicting the resulting protein structure. The exponential growth of protein databases has fueled the advancement of the field, while newly developed algorithms have pushed the boundaries of what was previously achievable in structure prediction. In particular, using deep learning methods instead of brute force approaches has emerged as a faster and more accurate strategy. These deep-learning techniques leverage the vast amount of data available in protein databases to extract meaningful patterns and predict protein structures with improved precision. In this article, we explore the recent developments in the field of protein structure prediction. We delve into the newly developed methods that leverage deep learning approaches, highlighting their significance and potential for advancing our understanding of protein design.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献