Spectroscopic Determination of Acetylcholine (ACh): A Representative Review

Author:

Świt PawełORCID,Pollap Aleksandra,Orzeł Joanna

Abstract

AbstractAcetylcholine (ACh) is one of the most crucial neurotransmitters of the cholinergic system found in vertebrates and invertebrates and is responsible for many processes in living organisms. Disturbances in ACh transmission are closely related to dementia in Alzheimer’s and Parkinson’s disease. ACh in biological samples is most often determined using chromatographic techniques, radioenzymatic assays, enzyme-linked immunosorbent assay (ELISA), or potentiometric methods. An alternative way to detect and determine acetylcholine is applying spectroscopic techniques, due to low limits of detection and quantification, which is not possible with the methods mentioned above. In this review article, we described a detailed overview of different spectroscopic methods used to determine ACh with a collection of validation parameters as a perspective tool for routine analysis, especially in basic research on animal models on central nervous system. In addition, there is a discussion of examples of other biological materials from clinical and preclinical studies to give the whole spectrum of spectroscopic methods application. Descriptions of the developed chemical sensors, as well as the use of flow technology, were also presented. It is worth emphasizing the inclusion in the article of multi-component analysis referring to other neurotransmitters, as well as the description of the tested biological samples and extraction procedures. The motivation to use spectroscopic techniques to conduct this type of analysis and future perspectives in this field are briefly discussed. Graphical Abstract

Funder

University of Silesia in Katowice

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3