A green approach for modification and functionalization of wool fabric using bio- and nano-technologies

Author:

Ibrahim Nabil A.,Amin Hala A.,Abdel-Aziz Mohamed S.,Eid Basma M.ORCID

Abstract

AbstractIn the present work, we propose a green and sustainable strategy for eco-friendly surface modification of wool structure using biosynthesized kerationlytic proteases, from C4-ITA-EGY, Streptomyces harbinensis S11-ITA-EGY and Streptomyces carpaticus S33-ITA-EGY, followed by subsequent environmentally sound functionalization of the bio-treated substrates using ZnONPs, ZrO2NPs, ascorbic acid and vanillin, individually, to provide durable antibacterial as well as UV-protection properties. Both surface modification changes and the extent of functionalization of the final products were characterized by SEM, EDX, antibacterial efficacy, UV-blocking ability, loss in weight, nitrogen content and durability to washing analysis. The obtained data reveal that the developed green wool fabrics exhibit outstanding durable antibacterial activity and UV-blocking ability for fabricating multi-functional textile products that can be utilized in a wide range of sustainable protective textiles, irrespective of the used post-finishing formulation ingredients. The results also show that both modification and functionalization processes are governed by the type of enzyme and kind of active material respectively. Moreover, the biosynthesized kerationlytic proteases could be accessibly used to remove protein-based stains like blood and egg. Graphical abstract

Funder

National Research Centre

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Reference52 articles.

1. Abdel-Aziz MS, Hathout AS, El-Neleety AA, Hamed AA, Sabry BA, Aly SE, Abdel-Wahhab MA (2019) Molecular identification of actinomycetes with antimicrobial, antioxidant and anticancer properties. Comun Sci 10:218–231

2. Anbu P, Hilda A, Sur H-W, Hur B-K, Jayanthi S (2008) Extracellular keratinase from Trichophyton sp. HA-2 isolated from feather dumping soil. Int Biodeterior Biodegradation 62:287–292

3. Badrulzaman SZS, Aminan AW, Ramli ANM, Che Man R, Wan Azelee NI (2021) Extraction and characterization of keratin from chicken and swiftlet feather. Materials Science Forum. Trans Tech Publ, pp 157–162

4. Bhange K, Chaturvedi V, Bhatt R (2016) Simultaneous production of detergent stable keratinolytic protease, amylase and biosurfactant by Bacillus subtilis PF1 using agro industrial waste. Biotechnol Rep 10:94–104

5. Bohacz J, Korniłłowicz-Kowalska T (2019) Fungal diversity and keratinolytic activity of fungi from lignocellulosic composts with chicken feathers. Process Biochem 80:119–128

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3