Material flow analysis of a post-consumer plastic packaging recycling system in The Netherlands: a focus on beverage carton

Author:

Schneider Julian Moritz,Ghannadzadeh AliORCID,van der Meer YvonneORCID

Abstract

AbstractDeveloping material flow models of waste and recycling streams can be crucial to determining the inefficiencies of post-consumer plastic packaging recycling systems. Currently, there is no such material flow model of beverage carton packaging waste in The Netherlands because beverage carton management is inherently difficult to measure and calculate. This paper presents a material flow model of beverage carton packaging waste in The Netherlands by calculating potential, collected, sorted, and recycled beverage carton dry weight. The results show that of a potential 60,000 tons of beverage carton material, 47,124 tons are recycled while 12,876 tons end up incinerated. This quantification does not only serve as a starting point for additional research and environmental policy considerations to improve the sustainability of the post-consumer plastic packaging recycling system, but it can also contribute to research in similar settings, leading to a more complete overview of the municipal solid waste recycling system. Graphical abstract

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3