Retention of organics and degradation of micropollutants in municipal wastewater using impregnated ceramics

Author:

Tsapovsky Lev,Simhon Michal,Calderone Vincenzo Roberto,Rothenberg Gadi,Gitis VitalyORCID

Abstract

Abstract Pesticides, personal care products, industrial chemicals often pollute surface- and groundwater sources. With trace concentrations and low molecular weights, these micropollutants (MPs) easily penetrate through treatment systems and impose a real health threat on drinking water consumers. The absence of a dedicated MP-retaining treatment technology at water treatment plants results in a constant consumption of MP-contaminated water. Advanced oxidation processes, and in particular the Fenton reaction, can successfully degrade MPs if other, larger, fractions of organics are retained. Here, we suggest a novel combined two-stage retention–degradation approach. Ceramic membranes retain large organics such as bovine serum albumin (BSA). Fenton processes disintegrate nonretained MPs such as methylene blue (MB) and bisphenol A (BPA) that penetrate through the membrane. The efficiency of the suggested approach is high. Single-layered ultrafiltration membrane retains more than 96% BSA and degrades 40–50% of MB and BPA. The degree of degradation depends on both the impregnated metal oxide and the concentration of hydrogen peroxide. Vanadium-based catalysts retain more than 90% MPs but leach into permeate. Ferric oxides were the only stable catalysts that performed better in membranes than when impregnated on α-Al2O3 pellets. A combined retention–degradation can be optimized to result in superior degree of retention. Catalytic ceramic membranes can retain large organic molecules and decompose MPs simultaneously. Three parameters affect the process efficiency: the dynamics of the influent fluid, the catalyst dose and the contact time. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3