Reversed cooling and heating performance of modernized courtyard envelope in hot-arid climates: a case study at an educational campus

Author:

Balah Eman Mohamed,Shokry Hassan,Hagishima Aya,Mahmoud Hatem

Abstract

AbstractCourtyard buildings embraced as a passive design paradigm, find wide application in modulating outdoor climatic conditions and fostering energy efficiency. Consequently, exploring passive strategies to mitigate the repercussions of climate change becomes a compelling priority. However, previous studies have predominantly emphasized the daytime performance of traditional courtyards in hot climates, often overlooking their performance throughout the entire day. This oversight includes the impact of courtyards in releasing stored heat into the air during nighttime, commonly referred to as "the reversed impact of the courtyard." This study evaluates the reversed thermal impact of glazed “modernized” courtyard envelope during nighttime and day-exposed radiation. This analysis considers the complex interaction between incoming and outgoing radiation flows. The study employed a combined approach involving onsite measurements and numerical simulations centered upon an educational building within a hot-arid zone. The scope of the study encompasses diverse courtyard geometries and various mitigation strategies, all characterized by heightened proportions of glazed surface areas. The results, depending on prevailing weather conditions, reveal the potential for these factors to reduce heating time from 17 h to just 2 h at the optimum. In contrast, there is an increase in cooling impact, ranging from 7 to 22 h throughout both day and night, with scenarios representing the least and most favorable cases, respectively. For designing processes, optimizing aspect ratio without exceeding 1.6 and glazed façade orientation is essential to control multi-reflection at the modernized courtyard envelope criteria. Graphical abstract

Funder

Egypt Japan University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3