Investigating best available technique for CO2 chemical absorption: solvent selection based on empirical surrogate model and exergy loss

Author:

Plesu Popescu Alexandra ElenaORCID,González Àgata,Llorens Joan,Bonet Jordi

Abstract

Abstract The carbon dioxide concentration in the atmosphere has reached extremely high levels, generating environmental concerns. Unfortunately, despite the climate change, CO2 is not included nowadays as a key environmental issue in Best Available Technique (BAT) reference documents (BREF). Industrially, the widespread industrial technology to capture CO2 is the chemical absorption using aqueous monoethanolamine (MEA) at 30%wt, which is the basis of comparison for novel alternative techniques in the literature and seems a suitable candidate to be proposed as Best Available Technique. Nevertheless, there is an intense research to find alternative solvents that decrease the energy consumption for carbon capture and many solvents are claimed in the literature to outperform MEA. A novel empirical surrogate model and exergy balances are used to confirm that MEA is still the best candidate to be proposed as Best Available Technique. The surrogate model proposed in this study properly regresses the CO2 gas liquid equilibrium data. The regressed parameters of the model are tabulated in this study for many aqueous alkanolamines and their mixtures, being the basis for computationally inexpensive chemical absorption column design. The surrogate model parameter considering the temperature is related with the chemical absorption energy and the consumed energy for solvent recovery. The obtained results show that none of the considered alkanolamine outperforms MEA in all the considered aspects, i.e. energy and solvent flowrate. MEA minimum flowrate is 15.62 mol solvent/mol gas and its heat of absorption regression parameter is − 27,745 J/mol. The proposed mathematical method is useful as a fast assessment for other novel alternatives that will be proposed in the future, providing energetically more efficient and cleaner technologies for CO2 capture. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3