Rice husk fibers and their extracted silica as promising bio-based fillers for EPDM/NBR rubber blend vulcanizates

Author:

Eissa Mohamed M.,Botros Samir H.,Diab Mohamed,Shafik Emad S.,Rozik Nehad N.

Abstract

AbstractBio-based natural wastes could be considered eco-friendly alternatives to conventional fillers for enhancing the properties and reducing the cost of final rubber products. Thus, in the present research, EPDM/NBR rubber blend composites filled with kaolin and mixed with rice husk fibers (RHFs) were prepared. Homogeneity of the EPDM/NBR blends was improved by the incorporation of maleic anhydride (MAH) as a compatibilizing agent (1 phr), as evidenced by scanning electron microscopy (SEM). Of all EPDM/NBR blend ratios investigated, the 25/75 blend revealed good mechanical properties, thermal stability, and the least weight swell at equilibrium (Q%) in motor oil and brake fluid. EPDM/NBR/kaolin (25/75/30) blend vulcanizates containing RHFs at various loadings demonstrated a significant improvement in swelling resistance, primarily in motor oil and brake fluid, accompanied by a slight reduction in the mechanical properties at high RHFs content. That was complemented by the enhancement of thermal stability of the rubber blends, as demonstrated by TGA analysis. Among the filler types investigated (RHFs, silica ash (SA), rice husk silica (RHS), and kaolin), RHFs exhibited the best swelling resistance of the composite vulcanizates in motor oil and brake fluid. In addition, RHS could be used successfully as a supporting filler for carbon black-reinforced EPDM/NBR composite vulcanizates because it enhanced their thermal stability and swelling resistance in the motor oil. Graphical Abstract

Funder

National Research Centre

National Research Centre Egypt

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3