Photocatalysis of low-density polyethylene using FKMW-ZnO NPs: optimization and predication model using a radial basis function neural network ensemble system

Author:

Noman Efaq Ali,Al-Gheethi Adel Ali,Alzaeemi Shehab Abdulhabib,Mohamed Radin Maya Saphira Radin,Gaik Tay Kim

Abstract

AbstractThe present study aimed to investigate the efficiency of biosynthesized zinc oxide nanoparticles in fungal supernatant grown in kitchen wastewater with microelectronic sludge (FKMW-ZnO NPs) to be used in the degradation low-density polyethylene (LDPE) in aqueous solution. The photocatalysis process was optimized using response surface methodology as a function of four independent factors included LDPE concentrations $$\left( {x_{1} } \right)$$ x 1 (100–500 mg/100 mL), FKMW-ZnO NPs concentrations $$\left( {x_{2} } \right)$$ x 2 (10–100 mg/100 mL), time $$\left( {x_{3} } \right)$$ x 3 (1–6 h) and pH $$\left( {x_{4} } \right)$$ x 4 (4–9). The maximum photocatalysis of LDPE was 45.43% optimized with 229.96 mg LDPE/100 mL, 100 mg FKMW-ZnO NPs/100 mL at pH 7 and after one hour with R2 is 0.7377. Microstructure and chemical structure analysis showed a significant change in the chemical structure of the photocatalysis of LDPE because of FKMW-ZnO NPs. The mathematical predication model using a radial basis function neural network ensemble system (RBFNNES) provided more accurate prediction model 89.2857% with R2 = 0.8688. However, RBFNNES revealed that FKMW-ZnO NPs and LDPE have unstable behaviour towards the investigated factor and the interaction between these factors where the error was increasing with the increasing the time of neural network which indicates that the obtained efficiency in the optimization study might be not applicable in the large scales or in different environmental factors. More optimization with a wide range of factors is required to understand the applicability of FKMW-ZnO NPs in remediation of LDPE in the environment. Graphical Abstract

Funder

The University of Newcastle

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3