Abstract
AbstractBimetallic nanoparticles (BNPs) have drawn significant attention due to their numerous applications. They demonstrate enhanced optical, electrical, thermal, and catalytic properties due to the synergistic effects of monometals present in them. In this work, CuAg and AuAg BNPs have been synthesized using a facile and economical chemical reduction method. Optical characterization was carried out using UV–visible spectroscopy, and effect of pH on optical absorbance was studied. For CuAg and AuAg BNPs, optimum pH was observed to be at 9.4 and 6.39, respectively. Morphological investigation confirms the average diameters of CuAg and AuAg BNPs were to be 65 nm and 30 nm, respectively. Photocatalytic property illustrates the reduction of 4-nitrophenol to 4-aminophenol with a 92% conversion percentage in the presence of CuAg BNPs in 4 min, and rate constant for the reaction was measured to be 8.98 × 10–3 s−1. But for the AuAg BNPs, the conversion percentage was 97% in 8 min and rate constant was found to be 7.95 × 10–3 s−1. Thermal conductivity and viscosity measurements of the nanofluids obtained with CuAg and AuAg BNPs have ascertained them to be efficient candidates for the heat transfer and catalytic applications.
Graphic abstract
Funder
Fondecyt Postdoctoral Project
Programa Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) de la Agencia Nacional de Investigación y Desarrollo, Chile
Manipal Academy of Higher Education
Manipal Academy of Higher Education, Manipal
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献