Polluted lignocellulose-bearing sediments as a resource for marketable goods—a review of potential technologies for biochemical and thermochemical processing and remediation

Author:

Haller HenrikORCID,Paladino Gabriela,Dupaul Gabriel,Gamage Shiromini,Hadzhaoglu Burdzhu,Norström Sara,Eivazi Alireza,Holm Svante,Hedenström Erik,Jonsson Anders

Abstract

AbstractLignocellulose-bearing sediments are legacies of the previously unregulated wastewater discharge from the pulp and paper industry, causing large quantities of toxic organic waste on the Baltic Sea floor and on the bottom of rivers and lakes. Several km2 are covered with deposits of lignocellulosic residues, typically heavily contaminated with complex mixtures of organic and inorganic pollutants, posing a serious threat to human and ecological health. The high toxicity and the large volume of the polluted material are challenges for remediation endeavours. The lignocellulosic material is also a considerable bioresource with a high energy density, and due to its quantity, it could appeal to commercialization as feedstock for various marketable goods. This study sets out to explore the potential of using this polluted material as a resource for industrial production at the same time as it is detoxified. Information about modern production methods for lignocellulosic material that can be adapted to a polluted feedstock is reviewed. Biochemical methods such as composting, anaerobic digestion, as well as, thermochemical methods, for instance, HTC, HTL, pyrolysis, gasification and torrefaction have been assessed. Potential products from lignocellulose-bearing sediment material include biochar, liquid and gaseous biofuels, growing substrate. The use of a contaminated feedstock may make the process more expensive, but the suggested methods should be seen as an alternative to remediation methods that only involve costs. Several experiments were highlighted that support the conception that combined remediation and generation of marketable goods may be an appropriate way to address polluted lignocellulose-bearing sediments. Graphic abstract

Funder

Mid Sweden University

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Reference101 articles.

1. Adams GO, Fufeyin PT, Okoro SE, Ehinomen I (2015) Bioremediation, biostimulation and bioaugmention: a review. Int J Environ Bioremed Biodegrad 3(1):28–39

2. Aguilar-Hernandez, G. A., Sigüenza-Sanchez, C. P., Donati, F., Merciai, S., Schmidt, J., Rodrigues, J. F., & Tukker, A. (2019). The circularity gap of nations: A multiregional analysis of waste generation, recovery, and stock depletion in 2011. Resources, Conservation and Recycling, 151, 104452.

3. AIS. (2018). Svensk Avfalls hantering 2018. Retrieved from Malmö, Sverige:

4. Allen, H. L., Torres, M., Shane, D., Hopinkah, D., Eng, S., & Miller, M. (2002). Rapid removal of toxaphene using anaerobic bioremediation technology. Paper presented at the Proceedings of Third International Conference on Remediation of Chlorinated and Recalcitrant Compound.

5. Antero, R. V. P., Alves, A. C. F., de Oliveira, S. B., Ojala, S. A., & Brum, S. S. (2020). Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: a review. Journal of cleaner production, 252, 119899.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3