Stability improvement of laccase for micropollutant removal of pharmaceutical origins from municipal wastewater

Author:

Meiczinger Mónika,Varga Béla,Wolmarans Lana,Hajba László,Somogyi ViolaORCID

Abstract

AbstractMicropollutants are persistent and hazardous materials in low concentrations (ng L−1–μg L−1), including substances such as pharmaceuticals, personal care products and industrial chemicals. The advancement of analytical chemistry has allowed for the detection of micropollutants; however, an efficient and economical treatment solution is yet to be installed. Fungal laccase has been a successful biocatalyst of these compounds. However, large-scale application of free enzyme is currently not feasible for removing water-borne micropollutants, partly due to relatively rapid loss in enzyme stability. In this paper, three types of cyclodextrin, α, β and γCD, were chosen to immobilise the laccase under various conditions with the aim to improve the stability of the enzyme. Laccase activity was chosen as a response parameter, and laccase-cyclodextrin binding was evaluated by Fourier-transform infrared spectroscopy (FTIR). Results showed an optimum using α-cyclodextrin immobilisation. At that level, α-cyclodextrin increased the half-life of laccase and slightly improved its activity in all tested pH by physically bonding to laccase. By protecting the enzyme structure, activity was maintained under a range of circumstances (acidic conditions, from 10 to 50 °C). Under room temperature and at pH 5, α-cyclodextrin-laccase nanocomposite had a better removal efficiency of diclofenac compared to free laccase of the same concentration. Graphical abstract

Funder

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

University of Pannonia

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3