Ground lemon and stevia leaves as renewable functional fillers with antioxidant activity for high-density polyethylene composites

Author:

Barczewski MateuszORCID,Aniśko JoannaORCID,Hejna AleksanderORCID,Mysiukiewicz OlgaORCID,Kosmela PaulinaORCID,Sałasińska KamilaORCID,Boczkowska AnnaORCID,Przybylska-Balcerek AnnaORCID,Stuper-Szablewska KingaORCID

Abstract

AbstractThe development of new sustainable material solutions in the processing of thermoplastic polymers concerns both the application of biopolymers and the use of valorized plant derivatives as fillers and modifiers of petrochemical polymers. Herein, the possibility of using unprocessed raw parts of two commonly used in the food industry leaves, i.e., lemon (LL) and stevia (ST), as active and functional fillers for high-density polyethylene (HDPE) has been verified. The series of composites containing 1, 2, and 5 wt% of ground leaves produced in the melt-mixing process were analyzed for thermal properties (DSC and TGA), and the antioxidant potential of the fillers was evaluated. Verifying the active effect of the ground leaves on the resistance to oxidation in the molten state was carried out by oxygen induction time (OIT by DSC) analysis and oscillatory rheology under steady-state shear conditions combined with spectroscopic (FTIR) carbonyl index (CI) analysis. Studies have shown that the introduction of 5 wt% of both types of leaves allows for a significant increase in the melt oxidation resistance (above 2 times longer OIT concerning HDPE, ~ 35 min) of composites without substantial changes in their crystalline structure and thermal stability. Determined after the long-term rheological measurements in an oxidative atmosphere CI showed 70 and 82% lower values for 5 wt% LL and ST composites compared to unmodified polyethylene. Graphical abstract

Funder

Narodowe Centrum Nauki

Publisher

Springer Science and Business Media LLC

Subject

Management, Monitoring, Policy and Law,Environmental Chemistry,Environmental Engineering,General Business, Management and Accounting,Economics and Econometrics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3