Highly selective and stable Zn–Fe/ZSM-5 catalyst for aromatization of propane

Author:

Oseke Gbenga Godwin,Atta Abdulazeez YusufORCID,Mukhtar Bello,Jibril Baba Yakubu,Aderemi Benjamin Olorunfemi

Abstract

AbstractLight alkane aromatization for aromatic compound production, used in petrochemical industries is an attractive area of research. The effect of second metal co-impregnation was investigated in stabilizing zinc on ZSM-5 in aromatization of propane. HZSM-5 was modified with zinc and iron metal by co wet-impregnation and characterized using XRF, XRD, BET, N2-adsorption, FTIR, FTIR-Pyridine, SEM, TEM, H2-TPR and XPS. The effect of different loadings of Iron on Zn/ZSM-5 was investigated on acidity, aromatic yield, product distribution and aromatization performance. Performance test was conducted in a fixed bed reactor at 540 °C, one atmosphere. GHSV of 1200 mL/g-h. Co-impregnation of Zn with Fe improved the catalytic activity and aromatic yield for 10 h time on stream as compared to parent HZSM-5 and Zn/ZSM-5 of very low aromatic yield and propane conversion. Impregnation of Zn as the dehydrogenating metal on HZSM-5 steadily increased aromatic yield from 5% on HZSM-5 to 25% and was steadily dropped to 20% after 10 h TOS. The co-impregnation of iron of 1–3 wt% loading as the second metal for zinc stability with 2 wt% Zn on ZSM-5 improved propane conversion and aromatic yield to 55% for the 10 h TOS. This further enhanced aromatic product distribution and minimized light gases.

Funder

Petroleum Technology Development Fund, Abuja

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3