Binary mixtures of choline chloride-based deep eutectic solvents as green extractants for the extraction of benzene from n-hexane

Author:

Usman Mohammed AwwaluORCID,Fagoroye Olumide Kayode,Ajayi Toluwalase Olufunmilayo,Kehinde Abiola John

Abstract

AbstractA suitable green solvent for extraction of aromatics from aliphatics must possess good solvation and physicochemical properties, a rare occurrence in a single deep eutectic solvent (DES). Mixture of DESs could enable synergy and provide a good candidate extractant. In this study, DESs of glyceline, ethaline, and reline were synthesized and their binary mixtures (glyceline/ethaline, reline/ethaline, and glyceline/reline) produced by blending in various volume proportions. Twelve of such mixed solvents were prepared and their extraction efficiency for separating benzene from n-hexane investigated in a batch equilibrium process. Liquid–liquid equilibria (LLE) data for the pseudo-ternary systems of n-hexane + benzene + mixed DESs were measured at 303 K and 101.3 kPa. The distribution coefficient (D) and selectivity (S) of each pseudo-ternary system were determined to elicit extraction efficiency. The physicochemical properties of the mixed DESs were also measured. The results show that generally the distribution coefficients, selectivities, and physicochemical properties of the mixed DESs lie between the corresponding values for the constituent DES. The best performance was given by the mixed solvent of glyceline and ethaline in the 80:20 volume ratio, respectively, with D = 0.75 and S = 422.485. This assertion was further corroborated by higher percent recovery of benzene obtained from the said mixed DES (57.88%) relative to other mixed DESs (≤ 49.11%) examined in this study. Furthermore, its separation efficiency is superior to sulfolane but lower than glyceline, though there was a 9.4% reduction in its viscosity relative to glyceline.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3