Computation of effectiveness factor for methanol steam reforming over Cu/ZnO/Al2O3 catalyst pellet

Author:

Olatunde Abayomi O.ORCID,Olafadehan Olaosebikan A.,Usman Mohammed A.

Abstract

AbstractA mathematical model was developed for a diffusion–reaction process in a spherical catalyst pellet contained in a heterogeneous packed bed reactor. The model developed was solved to predict the effectiveness factor and also to perform sensitivity analysis for steam reforming of methanol on Cu/ZnO/Al2O3 catalyst a source of hydrogen fuel. The method of orthogonal collocation was used to solve the resulting differential equation. At temperature below 473 K the effect on intra-particle diffusion limitation is reduced to the minimum indicated by the effectiveness factor being almost equal to one but as the temperature increases above 473 K there is considerable increase in the diffusion limitation effect. The effects of thermal conductivity, diffusion coefficient, catalyst size and surface temperature on effectiveness factor for the reaction process were also considered. Result indicates that catalyst size of $$1.623\,\, \times \,\,10^{ - 4}$$1.623×10-4 m eliminates the effect of intra-particle diffusion resistance in the pellet. The variation of effectiveness factor with Thiele modulus, showing the asymptotic values, using power law and Langmuir–Hinshelwood–Hougen–Watson (LHHW) kinetics, was predicted. The two reaction kinetics had almost the same magnitude of effectiveness factor at different Thiele modulus which indicates that they can adequately predict the reaction process.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3