1. Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM: The International Journal on Mathematics Education, 34(3), 66–72.
2. Baccaglini-Frank, A., & Mariotti, M. A. (2009). Conjecturing and proving in dynamic geometry: The elaboration of some research hypotheses. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the 6th Conference on European Research in Mathematics Education (pp. 231–240). Lyon, France: Institut National de Recherche Pédagogique. Retrieved December 30, 2018, from http://ife.ens-lyon.fr/publications/edition-electronique/cerme6/wg2-06-baccaglini-frank.pdf
3. Baccaglini-Frank, A., Mariotti, M., & Antonini, S. (2009). Different perceptions of invariants and generality of proof in dynamic geometry. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds), Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education (vol. 2, pp. 89–96). Thessaloniki, Greece: PME.
4. Baccaglini-Frank, A., & Mariotti, M. (2010). Generating conjectures in dynamic geometry: The maintaining dragging model. International Journal of Computers for Mathematical Learning, 15(3), 225–253.
5. Battista, M. (2008a). Representations and cognitive objects in modern school geometry. In G. Blume & K. Heid (Eds.), Cases and perspectives: Research on technology and the teaching and learning of mathematics (Vol. 2, pp. 341–362). Information Age Publishing.