Probabilities and Certainties Within a Causally Symmetric Model

Author:

Sutherland Roderick I.ORCID

Abstract

AbstractThis paper is concerned with the causally symmetric version of the familiar de Broglie–Bohm interpretation, this version allowing the spacelike nonlocality and the configuration space ontology of the original model to be avoided via the addition of retrocausality. Two different features of this alternative formulation are considered here. With regard to probabilities, it is shown that the model provides a derivation of the Born rule identical to that in Bohm’s original formulation. This derivation holds just as well for a many-particle, entangled state as for a single particle. With regard to “certainties”, the description of a particle’s spin is examined within the model and it is seen that a statistical description is no longer necessary once final boundary conditions are specified in addition to the usual initial state, with the particle then possessing a definite (but hidden) value for every spin component at intermediate times. These values are consistent with being the components of a single, underlying spin vector. The case of a two-particle entangled spin state is also examined and it is found that, due to the retrocausal aspect, each particle possesses its own definite spin during the entanglement, independent of the other particle. In formulating this picture, it is demonstrated how such a realistic model can preserve Lorentz invariance in the face of Bell’s theorem and avoid the need for a preferred reference frame.

Funder

University of Sydney

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Entanglement and the Path Integral;Foundations of Physics;2022-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3