Abstract
AbstractPenrose’s Spin Geometry Theorem is extended further, from SU(2) and E(3) (Euclidean) to E(1, 3) (Poincaré) invariant elementary quantum mechanical systems. The Lorentzian spatial distance between any two non-parallel timelike straight lines of Minkowski space, considered to be the centre-of-mass world lines of E(1, 3)-invariant elementary classical mechanical systems with positive rest mass, is expressed in terms of E(1, 3)-invariant basic observables, viz. the 4-momentum and the angular momentum of the systems. An analogous expression for E(1, 3)-invariant elementary quantum mechanical systems in terms of the basic quantum observables in an abstract, algebraic formulation of quantum mechanics is given, and it is shown that, in the classical limit, it reproduces the Lorentzian spatial distance between the timelike straight lines of Minkowski space with asymptotically vanishing uncertainty. Thus, the metric structure of Minkowski space can be recovered from quantum mechanics in the classical limit using only the observables of abstract quantum mechanical systems.
Funder
HUN-REN Wigner Research Centre for Physics
Publisher
Springer Science and Business Media LLC
Reference33 articles.
1. Ehlers, J., Pirani, F.A.E., Schild, A.: The geometry of free fall and light propagation. In: L. O’Raifeartaigh (Eds.), General Relativity, pp. 63–84. Clarendon Press, Oxford (1972). ISBN: 0198511264; Republication in Gen. Rel. Grav. 44 1587-1609 (2012), https://doi.org/10.1007/s10714-012-1353-4
2. Kundt, W., Hoffmann, B.: Determination of gravitational standard time. In: Recent Developments in General Relativity, Essays In Honour of L. Infeld, pp. 303–306. Pergamon Press, New York (1962)
3. Marzke, R.F., Wheeler, J.A.: Gravitation as geometry-I: The geometry of space-time and the geometrodynamical standard meter. In: Chiu, H.Y., Hoffman, W.F. (eds.) Gravitation and Relativity, pp. 40–64. Benjamin, New York (1964)
4. Penrose, R.: Structure of spacetime. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres, pp. 121–235. W.A. Benjamin, New York (1968). https://doi.org/10.1002/zamm.19700501224
5. Linnemann, N., Read, J.: Constructive axiomatics in spacetime physics Part I: Walkthrough to the Ehlers-Pirani-Schild axiomatisation, arXiv: 2112.14063 [gr-qc]