Minkowski Space from Quantum Mechanics

Author:

Szabados László B.

Abstract

AbstractPenrose’s Spin Geometry Theorem is extended further, from SU(2) and E(3) (Euclidean) to E(1, 3) (Poincaré) invariant elementary quantum mechanical systems. The Lorentzian spatial distance between any two non-parallel timelike straight lines of Minkowski space, considered to be the centre-of-mass world lines of E(1, 3)-invariant elementary classical mechanical systems with positive rest mass, is expressed in terms of E(1, 3)-invariant basic observables, viz. the 4-momentum and the angular momentum of the systems. An analogous expression for E(1, 3)-invariant elementary quantum mechanical systems in terms of the basic quantum observables in an abstract, algebraic formulation of quantum mechanics is given, and it is shown that, in the classical limit, it reproduces the Lorentzian spatial distance between the timelike straight lines of Minkowski space with asymptotically vanishing uncertainty. Thus, the metric structure of Minkowski space can be recovered from quantum mechanics in the classical limit using only the observables of abstract quantum mechanical systems.

Funder

HUN-REN Wigner Research Centre for Physics

Publisher

Springer Science and Business Media LLC

Reference33 articles.

1. Ehlers, J., Pirani, F.A.E., Schild, A.: The geometry of free fall and light propagation. In: L. O’Raifeartaigh (Eds.), General Relativity, pp. 63–84. Clarendon Press, Oxford (1972). ISBN: 0198511264; Republication in Gen. Rel. Grav. 44 1587-1609 (2012), https://doi.org/10.1007/s10714-012-1353-4

2. Kundt, W., Hoffmann, B.: Determination of gravitational standard time. In: Recent Developments in General Relativity, Essays In Honour of L. Infeld, pp. 303–306. Pergamon Press, New York (1962)

3. Marzke, R.F., Wheeler, J.A.: Gravitation as geometry-I: The geometry of space-time and the geometrodynamical standard meter. In: Chiu, H.Y., Hoffman, W.F. (eds.) Gravitation and Relativity, pp. 40–64. Benjamin, New York (1964)

4. Penrose, R.: Structure of spacetime. In: DeWitt, C.M., Wheeler, J.A. (eds.) Battelle Rencontres, pp. 121–235. W.A. Benjamin, New York (1968). https://doi.org/10.1002/zamm.19700501224

5. Linnemann, N., Read, J.: Constructive axiomatics in spacetime physics Part I: Walkthrough to the Ehlers-Pirani-Schild axiomatisation, arXiv: 2112.14063 [gr-qc]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3