Group Theoretical Derivation of Consistent Free Particle Theories

Author:

Nisticò GiuseppeORCID

Abstract

AbstractThe difficulties of relativistic particle theories formulated by means of canonical quantization, such as those of Klein–Gordon and Dirac, ultimately led theoretical physicists to turn to quantum field theory to model elementary particle physics. In order to overcome these difficulties, the theories of the present approach are developed deductively from the physical principles that specify the system, without making use of canonical quantization. For a free particle these starting assumptions are invariance of the theory and covariance of position with respect to Poincaré transformations. In pursuing the approach, the effectiveness of group theoretical methods is exploited. The coherent development of our program has shown that robust classes of representations of the Poincaré group, discarded by the known particle theories, can in fact be taken as bases for perfectly consistent theories. For massive spin zero particles, six inequivalent theories have been determined, two of which do not correspond to any of the current ones; all of these theories overcome the difficulties of Klein–Gordon one. The present lack of the explicit transformation properties of position with respect to boosts prevents the complete determination of non zero spin particle theories. In the past a particular form of these transformation properties was adopted by Jordan and Mukunda. We check its consistency within the present approach and find that for spin $$\frac{1}{2}$$ 1 2 particles there is only one consistent theory, which is unitarily related to Dirac’s; yet, once again, it requires classes of irreducible representations previously discarded.

Funder

Università della Calabria

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3