Abstract
AbstractWe show that there is no non-constant assignment of zeros and ones to points of a unit sphere in $$\mathbb{R}^3$$
R
3
such that for every three pairwisely orthogonal vectors, an odd number of them is assigned 1. This is a new strengthening of the Bell–Kochen–Specker theorem, which proves the non-existence of hidden variables in quantum theories.
Funder
Grantová Agentura Ceské Republiky
European Regional Development Fund
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy
Reference15 articles.
1. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38(3), 447–452 (1966)
2. Cabello, A., Estebaranz, J.M., García-Alcaine, G.: Bell–Kochen–Specker theorem: a proof with 18 vectors. Phys. Lett. A 212(4), 183–187 (1996)
3. Dichtl, M.: Astroids and pastings. Algebra Univ 18, 380–385 (1981)
4. Godsil, C.D., Zaks, J.: Colouring the sphere. University of Waterloo research report (1988)
5. Greechie, R.J.: Orthomodular lattices admitting no states. J. Combin. Theory Ser. A 10, 119–132 (1971)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献