Distribution of hydrogen atoms at metallurgical microphases of X52 pipeline steel studied by scanning Kelvin probe force microscopy and finite element modelling

Author:

Hu Qing,Li Yuan,Cheng Y. FrankORCID

Abstract

AbstractThe work combined scanning Kelvin probe force microscopy measurements and finite element modelling to study the diffusion and distribution of hydrogen (H) atoms at metallurgical microphases contained in X52 pipeline steel. Results show that the pearlite contained in the steel is more stable than the ferrite during electropolishing, as indicated by the measured topographic profiles and Volta potentials. The hydrogen (H)-charging enhances the electrochemical activity of both pearlite and ferrite, as shown by increased Volta potential and thus the decreased work function. As the H-charging time increases, the Volta potentials of both phases further increase, implying that their activities increase with the H-charging time. The pearlite has a greater Volta potential and thus a lower work function than the ferrite. This is associated with more H atoms accumulating at the pearlite than at the ferrite. The H atom diffusion and accumulation are affected by H diffusivity at phase boundaries, H-trap binding energy and the number of traps in the steel.

Funder

Mitacs

Innotech Alberta

NSERC

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3