Abstract
AbstractCatalytic CO2 hydrogenation to valuable chemicals is an excellent approach to address the increasingly serious “greenhouse effect” caused by CO2 emission generated from the utilizations of nonrenewable fossil energies, while such a process is limited by chemical inertia and thermal stability of the CO2 molecule and complex hydrogenation routes. In this review, we first summarized the recent progresses of metal-oxide nanocatalysts considered as a category of the most promising catalysts in CO2 hydrogenation to value-added C1 chemicals including CH4/CO, formic acid/formate, and methanol. These studies involve with different structural factors affecting the metal-oxide interfacial catalysis including the structures of both the metals (type, particle size, morphology/crystal plane, and bimetal alloy) and the supports (type, particle size, crystal phase, morphology/crystal plane, and composite) and their (strong) metal-support interactions so as to identify the key factor determining the reaction activity, product selectivity, and catalytic stability in CO2 hydrogenation. Finally, we further discuss challenging coupling with future research opportunities for tunable interfacial catalysis of metal-oxide nanocatalysts in CO2 conversion.
Funder
National Natural Science Foundation of China
Jinhua Industrial Key Project
self-designed scientific research project of Zhejiang Normal University
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献