Effect of thermal oxidation on the dry sliding friction and wear behaviour of CP-Ti on CP-Ti tribopairs

Author:

Sun YongORCID,Bailey Richard,Zhang Jin,Lian Yong,Ji Xiulin

Abstract

AbstractThermal oxidation (TO) has proven to be a cost-effective and efficient technique to engineer the surfaces of titanium and its alloys to achieve enhanced surface properties. The benefits of TO treatment in enhancing the tribological properties of titanium have been demonstrated by many investigators. However, most of the reported tribological studies have been based on the contact between a TO treated titanium specimen and a counter-body made of other materials, mainly ceramics, steels and polymers. Very few studies have been reported on the friction and wear behaviour of TO treated titanium sliding against TO treated titanium. In this work, the effect of thermal oxidation on the dry sliding friction and wear behaviour of commercially pure Ti (CP-Ti) on CP-Ti tribopairs was investigated under loading conditions ranging from elastic contact to plastic contact. Comparisons were made among three contact pairs: (1) untreated Ti on untreated Ti (Ti–Ti), (2) untreated Ti on TO treated Ti (Ti-TO) and (3) TO treated Ti on TO treated Ti (TO-TO). The results show that the TO-TO contact pair presents an ideal material combination to achieve the best tribological performance in terms of low friction and superior wear resistance. On the other hand, the Ti–Ti pair presents the worst combination in terms of tribological performance. While the Ti-TO pair performs better than the Ti–Ti pair tribologically, it is not as good as the TO-TO pair. It is essential to thermally oxidize both specimens in order to achieve optimal tribological performance. It is the oxide layer-on-oxide layer contact that imparts the excellent tribological performance. Failure of the oxide layer in one of the contact bodies can lead to high and unstable friction and increased wear from both contacting bodies. The tribological performance of the three contact pairs and the failure mechanism of the oxide layer are discussed in the paper. The results of this work suggest that the TO treated Ti on TO treated Ti contact pair would have potential tribological applications in engineering.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3