1. Ahn, J. J., Byun, H. W., Oh, K. J., & Kim, T. Y. (2012). Using ridge regression with genetic algorithm to enhance real estate appraisal forecasting. Expert Systems with Applications, 39(9), 8369–8379. https://doi.org/10.1016/j.eswa.2012.01.183
2. Brondino, N. C. M., & Silva, A. N. R. (1999). Combining artificial neural networks and GIS for land valuation purposes. Proceedings of the 6th International Conference Computers in Urban Planning and Urban Management, Franco Angeli.
3. Chiarazzo, V., Caggiani, L., Marinelli, M., & Ottomanelli, M. (2014). A neural network-based model for real estate price estimation considering environmental quality of property location. Transportation Research Procedia, 3, 810–817. https://doi.org/10.1016/j.trpro.2014.10.067
4. Dere, M., & Filiz, İH. (2019). Experimental investigation of the effects of workpiece diameter and overhang length on the surface roughness in turning of free machining steel and modelling of surface roughness by using ANFIS. Journal of the Faculty of Engineering and Architecture of Gazi University, 34(2), 675–686.
5. Din, A., Hoesli, M., & Bender, A. (2001). Environmental variables and real estate prices. Urban Studies, 38(11), 1989–2000. https://doi.org/10.1080/00420980120080899