Cost-neutral reduction of infection risk in picker-to-parts warehousing systems

Author:

Löffler Maximilian,Schneider Michael,Žulj IvanORCID

Abstract

AbstractThe rapid and severe outbreak of COVID-19 caused by SARS-CoV-2 has heavily impacted warehouse operations around the world. In particular, picker-to-parts warehousing systems, in which human pickers collect requested items by moving from picking location to picking location, are very susceptible to the spread of infection among pickers because the latter generally work close to each other. This paper aims to mitigate the risk of infection in manual order picking. Given multiple pickers, each associated with a given sequence of picking tours for collecting the items specified by a picking order, we aim to execute the tours in a way that minimizes the time pickers simultaneously spend in the same picking aisles, but without changing the distance traveled by the pickers. To achieve this, we exploit the degrees of freedom induced by the fact that picking tours contain cycles which can be traversed in both directions, i.e., at the entry to each of these cycles, the decision makers can decide between the two possible directions. We formulate the resulting picking tour execution problem as a mixed integer program and propose an efficient iterated local search heuristic to solve it. In extensive numerical studies, we show that an average reduction of 50% of the total temporal overlap between pickers can be achieved compared to randomly executing the picking tours. Moreover, we compare our approach to a zone picking approach, in which infection risk between pickers can be almost eliminated. However, compared to our approach, the results show that the zone picking approach increases the makespan by up to 1066%.

Funder

Computational Science Lab (CSL) Hohenheim, Germany

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,Business, Management and Accounting (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3