One-stage product-line design heuristics: an empirical comparison

Author:

Baier DanielORCID,Voekler Sascha

Abstract

AbstractSelecting or adjusting attribute-levels (e.g. components, equipments, flavors, ingredients, prices, tastes) for multiple new and/or status quo products is an important task for a focal firm in a dynamic market. Usually, the goal is to maximize expected overall buyers’ welfare based on consumers’ partworths or expected revenue, market share, and profit under given assumptions. However, in general, these so-called product-line design problems cannot be solved exactly in acceptable computing time. Therefore, heuristics have been proposed: Two-stage heuristics select promising candidates for single products and evaluate sets of them as product-lines. One-stage heuristics directly search for multiple attribute-level combinations. In this paper, Ant Colony Optimization, Genetic Algorithms, Particle Swarm Optimization, Simulated Annealing and, firstly, Cluster-based Genetic Algorithm and Max-Min Ant Systems are applied to 78 small- to large-size product-line design problem instances. In contrast to former comparisons, data is generated according to a large sample of commercial conjoint analysis applications (n = 2,089). The results are promising: The firstly applied heuristics outperform the established ones.

Funder

Universität Bayreuth

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,Business, Management and Accounting (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3