A partition-based branch-and-bound algorithm for the project duration problem with partially renewable resources and general temporal constraints

Author:

Watermeyer KaiORCID,Zimmermann Jürgen

Abstract

AbstractThe concept of partially renewable resources provides a general modeling framework that can be used for a wide range of different real-life applications. In this paper, we consider a resource-constrained project duration problem with partially renewable resources, where the temporal constraints between the activities are given by minimum and maximum time lags. We present a new branch-and-bound algorithm for this problem, which is based on a stepwise decomposition of the possible resource consumptions by the activities of the project. It is shown that the new approach results in a polynomially bounded depth of the enumeration tree, which is obtained by kind of a binary search. In a comprehensive experimental performance analysis, we compare our exact solution procedure with all branch-and-bound algorithms and state-of-the-art heuristics from the literature on different benchmark sets. The results of the performance study reveal that our branch-and-bound algorithm clearly outperforms all exact solution procedures. Furthermore, it is shown that our new approach dominates the state-of-the-art heuristics on well known benchmark instances.

Funder

Technische Universität Clausthal

Publisher

Springer Science and Business Media LLC

Subject

Management Science and Operations Research,Business, Management and Accounting (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3